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Abstract

Ecological theory traditionally describes predator-prey interactions in terms of a law of mass action in which the prey mortality rate depends on the density of predators and prey.  In such models, the mortality rate is characteristically a function of the exposure time of the prey to predators.  However, observations on migrating prey (juvenile salmon) through a field of predators (piscivors) reveals mortality depends mostly on distance traveled and only weakly on travel time.  A new predator-prey model based on gas collision theory is proposed to reconcile these observations.  In this formulation, survival depends on both distance traveled and exposure time, and the importance of each depends on the intensity and character of predator and prey motion. If prey migrate directly through a gauntlet of stationary predators the prey mortality depends on migration distance not migration time.  This gauntlet effect possibly explains the distance dependence of mortality in juvenile salmon migration.  At the other extreme, if prey and predators move randomly within an enclosed habitat, mortality is time dependent.  Spatiotemporal dimensions of the ecological neighborhood in which predation events occur are defined in terms of a predator-prey encounter area and velocity.  Model coefficients estimated from mortality data of juvenile chinook salmon migrating through the tributaries of the Snake River are compared to independent estimates and are found to be in agreement. 
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Introduction

In this paper, we adapt the mean-free path length model of molecular collisions to describe mortality events in predator-prey systems.  The impetus for the approach is a set of observations showing the survival of juvenile salmon (smolts) migrating through the Columbia and  Snake rivers is significantly related to the distance traveled but not travel time (Bickford and Skalski 2000, Muir et al. 2001, Smith et al 2002).   At face value, this finding is perplexing, because from a first principles argument we expect that the mortality of migrating prey should increase with increased exposure to predators along the migration route.  However, in these studies, fish traveling longer distances characteristically had higher mortality than fish that travel shorter distances irrespective of the travel time in either group.   A modeling study of migrating juvenile salmon moving through a predator field, also in apparent contradiction to the observations, indicated that the mortality should increase as the downstream prey velocity decreases (Peterson and DeAngelis 2000).   In a follow-up paper, DeAngelis and Peterson (2001) explored their model further and demonstrated that the mortality depended on the way in which the ecological neighborhood was formulated in their model, where the neighborhood is defined as the region within which an organism is active or has some influence during the appropriate period of time (Addicott et al 1987).   Indeed, the importance of the scale at which predators and prey interact, “the ecological neighborhood,” has been noted in many studies (Tilman and Kareiva 1997).  In particular, predator-prey dynamics generated in individual-based models in which the predator-prey interactions are exactly defined cannot be reproduced in models using (mean-field) systems of differential equations (Pascual and Levin 1999).  Furthermore, individual-based spatially explicit models show that the local movement of animals between sites can affect the synchrony of the large-scale population dynamics (Engen, Lande and Saether 2002).  From these studies, we may be led to conclude that predator-prey systems are best studied with individual-based models that exactly define the ecological neighborhood and the interactions within it.  However, while individual-based models can be more realistic, their interactions are complex and the model results may be extremely sensitive to the parameter estimations, and therefore prone to error propagation (Levin 1992).   Differential equation based predator-prey models, which are characterized by only a few parameters have value, because it is often possible to estimate the parameters from data.  However, even though limited parameter models may fit data, do they correctly represent the ecological neighborhood, which is essential to modeling populations?  Specifically, when varying the parameters in a differential equation model, which may or may not be calibrated to data, is the resulting response meaningful?

It is worth noting that most, if not all, models of predator prey interactions are based on the principle of “mass action” within the ecological neighborhood.  For example, if C and F denote the number of predators and prey in an ecological neighborhood, and if the prey are equally vulnerable to predators in a time step, then the mass action assumption implies the number of prey eaten per unit time is proportional to the product of F and C, so predation rate ~ aFC (DeRoos et al. 1991), where a is a rate coefficient that may be constant or depend on other factors such as predator satiation as was assumed by Peterson and DeAngelis (2000).  However, virtually missing in mass action models is the effect of predator and prey movements within the ecological neighborhood.  Clearly, real behaviors in which the movements and distribution of predators and prey change in response to each other can significantly complicate the interactions and are likely to invalidate many assumptions in predator-prey models (Lima 2002).  Overall then, the discrepancies between differing modeling approaches, between models and data, and between model assumptions and observed behaviors, are sufficient to reexamine the foundation of mass action predator-prey models. 

In this paper, we reevaluate the predator-prey mass action assumption from first principles.  Our goal is to derive a predator-prey law, in which an ecological neighborhood naturally evolves in terms of predator and prey movements, densities, and the field of perception.  

Survival Model

The law of mass action in ecology has its origins in chemical theory derived in 1886 
. In the same way as a collision of two molecules produces one combined molecule, a predator and prey encounter produces one fed predator.  However, the mean free path theory describing the collision of gases in terms of their velocity, size, and density provides a more fundamental description of an encounter.   In particular, the concept of an ecological neighborhood naturally emerges from a description of predator-prey encounters in terms of collision.  The mean free path length is derived through several similar approaches; here we follow an example illustrated by Feynman (Feynman, Leighton and Sands 1963).  

Begin by assuming a prey takes an erratic but possibly directed path through its environment which contains predators distributed in an unspecified structured or random pattern and which may move about their environment.  The average time between predator encounters is , and over an ensemble of prey and predator-prey interactions, assume that the probability of an encounter follows a Poisson distribution such that
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where t is the total exposure time.  To derive an expression for , first define the chance a prey encounters a predator in traveling a short distance by the equation
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where  is the prey’s path length and dx is a short distance in the direction the prey travels.  

The chance of encounter can also be expressed in terms of the predator density and a cross-sectional area , within which a predator and prey must simultaneously reside in order for the predator to consume the prey.  Consider , or encounter area, a measure of the scale of the ecological neighborhood for predator prey interaction.  Using the analogy to molecular collisions, how far a prey travels before encountering a predator depends on the number of predators, expressed as a predator density , and the cross-sectional area at which a predator reacts to a prey.  Now, moving the prey a distance dx defines a volume with a unit of area perpendicular to the direction of motion.  Within this volume, there are dx predators (Fig. 1) and because the encounter area of each predator is  the total predator encounter area within the unit area perpendicular to the prey’s direction is dx.  The chance of encountering a predator is the total encounter area divided by the unit area, which is simply 
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Equating Eqs. (2) and (3) the path length is 
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The encounter time and path length are related by the u, which is prey velocity relative to the predator velocity.  Thus,  = u and the characteristic encounter time becomes
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This relative velocity, or encounter velocity, is expressed as a root-mean-squared (rms) relative velocity between the predator and prey as
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where v is the absolute prey velocity and w is the absolute predator velocity.  Next, represent predator and prey velocities in terms of average and fluctuating parts as   
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where W and V are the mean predator and prey velocities and w* and v* are the associated fluctuating or random velocities about the mean values (Sverdrup et al. 1942).  By definition, the mean velocities are taken over the entire observation period so the fluctuation parts have zero mean values.  The square of the encounter velocity in terms of its parts is
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The expected value of Eq. (8) simplifies as follows:  Assume the fluctuating predator and prey velocities are uncorrelated and then, because by definition the means of the fluctuating parts are zero, all terms except the squared terms, have zero means.  The rms encounter velocity defined by Eq. (6) reduces to
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where the squared mean encounter velocity is 
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and the mean squared random encounter velocity is  
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Note that is the sum of the variances of the predator and prey velocities.  

Using Eq. (9) in Eq. (5) to define  in Eq. (1) the prey survival as a function of time is 
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Special cases of the survival model

Several special cases arise from Eq. (12).  If the predators are resident within a habitat then by definition W = 0.   If the prey migrate through the habitat the migration distance is defined x = Vt, where t is the migration travel time and the survival is a function of migration distance and time as
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Equation (13) will be referred to as the XT model.  Further, if the prey migration is fast and the predators are resident and nearly stationary then V2 ~ U2 >> 2 and prey survival becomes a function of distance 
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Equation (14) will be referred to as the gauntlet model.  The general model admits two special cases in which prey survival depends only on the amount of time prey are exposed to predators. If the prey are stationary, so v = 0, and predators are resident or migratory, then the prey survival equation becomes

14) 

[image: image15.wmf](

)

exp/

rms

Swt

=-l




where wrms is the root mean squared predator velocity.  If the predators and prey are both mobile and resident within the habitat so U2 = 0, then 
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A case study with migrating juvenile salmon

Studies of juvenile chinook salmon migrating through the Snake and Columbia River system indicate survival depends primarily on distance, not travel time (Muir et al. 2001, Smith et al. 2002).   Predator prey models based on mass action are in conflict with this finding because in such models survival should depend on travel time.  However, the XT model has distance dependent survival so it is instructive to fit the model to the salmon migration data.  We use mark recapture studies conducted on Snake River system.   Between 1993 and 1998, 78 tagged groups of fish were released from 17 hatchery locations in the tributaries of the Snake River Basin (Fig. 2).  The fish were tagged with passive integrated transponder (PIT) tags (Prentice, Flagg, and McCutcheon 1990) and were released from locations in the Snake River tributaries ranging from 61 km to 772 km upstream of the detection site at Lower Granite Dam.   Release sample sizes ranged from 135 to 27,527 fish.  Survivals to Lower Granite Dam were estimated with the multiple–recapture model for single-release groups (See Muir et al. 2001).   Muir et al. (2001) noted the estimated survival from the hatcheries was inversely correlated with migration distance to Lower Granite Dam (r2 =0.64, P< 0.001).  Survival also had a weak inverse relationship with travel time to Lower Granite Dam (r2 = 0.17, P > 0.07).  


To test the model with the Muir et al. (2001) data, assume the predators are resident in the Snake River tributaries.  Therefore, Eq. (13) should be an appropriate descriptor of the juvenile salmon survival.  To estimate the model parameters, Eq. (13) is written in the multiple-linear form 
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where the model parameters are defined
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Because of the large difference in sample sizes, we weighted the individual survival estimates by one over the square of the sample size from each release site.  We performed the regressions for each year and for the combined years (Table 1).  Using the estimated parameters and the range of parameter errors, the mean, minimum, and maximum values of the  and  were estimated using Eq. (18) (Table 2). 

Results

The r-squares of the fit of the gauntlet model (Table 1) are all above 0.6.  Considering the regressions for the individual years, in all years except 1997 the p-value on the a coefficient is highly significant.  For the b coefficient, only 1997 is significant while the values in the other years have standard errors equal to or greater than the parameter estimate.  For the regression on the combined years, the a coefficient is highly significant and the b coefficient is significant but less so.  The estimated mean path length is between 400 and 900 km for all years except 1997, which is considerably larger (Table 2).  In most years because the b coefficient is negative, the random encounter velocity  can not be calculated.  However, because the b coefficients are not statistically different from zero in all years except 1997, we may assume that  is very small but positive for this data.  Thus, the random encounter velocity is near zero.  

However, 1997 is anomalous and needs to be reconciled with the other years.   A recorded high flow occurred in 1997, but surprisingly fish travel times were some of the longest observed in the six years of study, suggesting that the flood delayed smolt migration and resulted in that year having a predator-prey dynamic different from the other years.  For all years combined, the random encounter velocity is 9.5 cm/s and the mean smolt path length is 745 km (Table 2).  Excluding 1997, the mean path length is 500 km and the random encounter velocity is zero.  In comparison, from the observed migration times and distances to Lower Granite Dam, the average smolt migration velocity was 14 cm/s.  Thus, if the encounter velocity is on the order of a few cm/s, then from Eq (9) the squared average migration velocity (V2 = 196) dominants the random component (2 = 1) and the survival should depend mostly on travel distance as was reported by Muir et al. (2001).    

Comparison with independent predictions

In this section, we compare parameters estimated from the XT model to estimates derived from other methods using independent observations.

Encounter distance

From Eq. (4), the predation encounter distance, , characterizing the average distance at which a predation event occurs can be defined  
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To estimate  the predator density over the migration path is required.  To derive a very approximate estimate of  we use population estimates of northern pikeminnow and smallmouth bass, which are the major predators of juvenile salmon in the river (Poe et al. 1991, Knutsen and Ward 1999).  Estimated populations for Lower Granite Reservoir are 26,000 northern pikeminnow larger than 250 mm (public communication
) and 20,911 smallmouth bass larger than 174 mm (Bennett et al. 1997).  Dividing the combined populations by the volume of Lower Granite Reservoir, 597 x106 m3, the predator density is  = 7.9 x10-5 predators m-3.  Then, using the range of model estimates of , the predator-prey encounter distance is about 9 cm with a minimum of 1.6 cm for 1997 and a maximum of 10.5 cm for 1995.  The corresponding encounter areas are  = 8, 254 and 352 cm2 receptively.  Because  is derived from survival estimates of fish migrating for several weeks, the encounter distance represents an average of day and night conditions over the migratory period.

For an independent estimate of the encounter distance, consider observations of predator reaction distance, which should be somewhat greater than the encounter distance because reaction distance identifies the distance at which a predator first reacts to a prey while the encounter distance, by definition, is the distance within which a predation event occurs.  Reaction distance depends on water clarity and light level (Vogel and Beauchamp 1999).  In 1997, the water clarity based on horizontal secchi disk readings in the Grande Ronde, a tributary of the Snake River, ranged between 20 and 100 cm, with a mean of about 50 cm (Steel 1999).  This equates to a turbidity reading of about 40 NTU (Steel and Neuhauser 2002).  Additionally, secchi reading in Lower Granite Reservoir typically vary between 10 and 50 cm
.   Using the Vogel and Beauchamp (1999) reaction distance formula for the response of lake trout to rainbow and cutthroat trout prey, the reaction distance is 37 cm under midday conditions (100 lux) and a turbidity of 40 NTU, while in a midcrepuscular period (0.17 lux) the reaction distance is 5 cm.  Additionally, note that laboratory studies on brook trout (Sweka and Hartman 2001) and rainbow trout (Barrett, Grossman, and Rosenfeld. 1992) found reaction distances less than 20 cm for turbidity levels greater than 30 NTUs.  Furthermore, because the reaction distance is zero at night, the reaction distance averaged over the day should be about half the midday values and thus between 10 and 20 cm.

Thus, the 9 cm encounter distance derived from the XT model is reasonable because it is close to but less than the reaction distances estimated above.  Consequentially, we may expect that in the Snake River tributaries, as has been found in other systems (Gregory and Levings 1998), water visibility is an important determinant of predator-prey encounter distance and therefore of smolt survival.

Random encounter velocity

The predator-prey random encounter velocity depends on the random prey velocity, v*, and the random predator velocity, w*, according to Eq. (11).  An upper estimate of v* can be derived from Zabel (2002) in which the distribution of smolt migration travel times was modeled with an advection-diffusion equation controlled by two parameters: migration velocity, r, and a spread term, 2.   The travel time distribution is inversely related to the migration velocity distribution and, based on Tweedie (1957), the variance in the migration velocity is 
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where x is the migration distance.  The square root of Eq. (20) provides an upper estimate of v*.  From four years of data on wild Snake River spring chinook migrating 233 km from the Salmon River to Lower Granite Dam
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 ranged between 9.0 and 16.1 cm/s.  

For a second measure of the encounter velocity, consider predator velocities determined from radio-tagged Northern pikeminnow in John Day Reservoir.  Using fish positions determined several times per day in May 1993 and 1994, average velocity was 7 cm/s in the tailrace and 1 cm/s in mid-reservoir (Martinelli and Shively 1997, Martinelli, Shively, and King 1993).  Additionally, the coefficients of variation were about one in both areas so the random velocity about equals the average velocity, and to a first order the predator random velocity is expected to be a few cm/s.

In comparison, the XT model estimated encounter velocity for the Snake River tributaries range between 0 and 287 cm/s, and (excluding 1997) the encounter velocity ranges between 0 and 11.1 cm/s.  Although these estimates are relatively close, a direct comparison between them is problematic.  First, uncertainty in all estimates is large and it is not possible to put meaningful confidence intervals on any of them.  Second, the estimates derived from prey and predator movements only represent components of the combined estimate of the XT model.  Third, the prey random velocity estimated from Eq. (20) contains additional elements other than the actual random swimming velocity.  Equation (20) is derived from a difference in arrival times of fish after traveling the distance x.  Because early in migration smolts mostly migrate at night and are presumed to hold station near the bottom during the day (Zabel 2002), the spread in a release group’s arrival time at a downstream location  is the result of both their actual random swimming velocity and their diel station holding behavior.   Thus, the velocity derived from Eq. (20) should represent an upper limit of v*.   Considering these caveats, XT model’s estimate of  near zero is reasonable.  

Discussion

The initial impetus for this model was the consistent result from many studies that the survival of juvenile spring/summer chinook migrating through the Snake and Columbia Rivers was essentially independent of smolt travel time and flow (Bickford and Skalski 2000, Muir et al. 2001, public communication
).  However, several studies also found that survival was a function of the migration distance.  In particular, the survival of hatchery fish from Snake River tributaries to Lower Granite Dam were significantly related to distance traveled, but not travel time (Muir et al. 2001).  Because classical predation theory based on mass action fails to explain these observations, we reconsidered the predator-prey dynamics from first principles gas collision theory.  We developed a model in which prey survival depends on the mean and random encounter velocities between predators and prey, a predator-prey encounter distance, and predator density.  

The relative contributions of travel time, T, and travel distance, X, on prey survival depends on the random predator-prey encounter velocity.  When this velocity is small, predators are relatively stationary and prey move more or less directly through their habitat.  Under this scenario, once a prey passes a predator, future encounters are unlikely: prey essentially traverse a gauntlet of predators and so mortality depends on the number of predators passed, which functionally depends on migration distance, not migration time.  When the random encounter velocity is large, predators and prey move about the habitat; multiple encounters can occur and so the prey mortality rate depends on their exposure time to predators.  

The XT model illustrates that the relationship between the total migration time, distance, and survival depends on small-scale ecological neighborhood of predator and prey interactions.  A model missing the essentials of these interactions can produce erroneous large-scale features.  For example, neither a simple model with survival declining exponentially in time, nor an individual based, finite cell model in which mortality depends on cell residence time (e.g., Peterson and DeAngelis 2000) decouples the effects of distance and time on survival.  The small-scale predator-prey interactions, which in the XT model produce the gauntlet effect, are missing in both models.  However, the XT model’s characterization of small-scale interactions is very simple.  Missing are any considerations of predator-prey bioenergetics or fish responses to their immediate environment, which is on the order of centimeters.  Incorporating these factors should provide additional valuable insights into predator-prey dynamics.  

Using XT model we are able to compare the encounter distance and encounter velocity to estimates made with independent data using other approaches.   The encounter distance is similar to the reaction distance and is approximately equal to the water clarity.  The encounter distance estimated by the model is in good agreement with measurements of water clarity for the Snake River and for laboratory estimates of reaction distance.  Although estimates of encounter velocities are only available indirectly for smolts, estimates derived by two methods are reasonably close to the model estimated encounter velocity.  Thus, agreement between model and independently parameter estimates is encouraging.  Perhaps more importantly though, in the same fashion that gas collision theory provided detail and enumeration to the law of mass action in chemistry, the XT model provides an expanded and intuitive framework in which to describe the predator-prey ecological neighborhood.  In particular, the theory provides a simple coupling between small-scale predator-prey interactions and large-scale patterns.
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Tables

Table 1.  Survival equation coefficients for spring chinook hatchery releases and migration to Lower Granite Dam.  Regressions for years 1993-1998 and all years (All) are based data in (Muir et al 2001) with Eq. (17).  

	
	
	a parameter
	b parameter

	year
	r-sq
	 Value

10 6
	Std err 10 6
	p-val
	Value 10 4
	Std err 10 4
	p- val

	1993
	0.829
	3.381
	0.665
	0.0005
	-1.192
	1.537
	0.455

	1994
	0.939
	3.707
	0.308
	<0.0001
	-1.220
	1.107
	0.288

	1995
	0.687
	5.981
	1.587
	0.0021
	-2.304
	3.987
	0.572

	1996
	0.647
	4.477
	1.356
	0.0057
	-1.949
	2.110
	0.372

	1997
	0.853
	0.005
	0.885
	0.9961
	3.803
	1.172
	0.022

	1998
	0.923
	1.209
	0.347
	0.0059
	0.505
	0.548
	0.378

	All
	0.603
	1.803
	0.423
	0.0001
	1.636
	0.642
	0.012

	w/o 1977
	0.632
	4.010
	0.499
	<0.0001
	-2.20
	0.91
	0.019


Table 2. model parameter ranges.   has units of km,  has units of cm/s. Subscripts min and max are defined by standard errors on the regression parameters.

	Year
	min
	ave
	max
	min
	ave
	max

	1993
	497
	544
	607
	 
	 
	3.6

	1994
	499
	519
	542
	 
	 
	 

	1995
	364
	409
	477
	 
	 
	6.2

	1996
	414
	473
	566
	 
	 
	2.3

	1997
	1060
	14759
	 
	17.2
	287.8
	 

	1998
	802
	909
	1077
	 
	6.5
	11.1

	All
	670
	745
	851
	6.7
	9.5
	12.8

	w/o 1977
	471
	499
	534
	
	 
	 


Figure Captions

Fig. 1.  Illustration of a prey moving a distance dx through a unit area of predator habitat.  

Fig. 2. Map showing Snake River tributaries and the hatcheries from which fish were released for survival studies.
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� P. Waage and C.M. Guldberg (1864) postulated the law of mass action based on experiments on esterification performed in 1862 by Berthelot and St Gillis.  The law was introduced into the ecological literature by the great mathematician Vito Volterra (1926) who proposed to his future father-in-law and eminent hydrobiologist Umberto D’Ancona a mathematical model for D’Ancona’s observations in which increases in some fish species coincided with decreases in others (Hutchinson 1978).


� National Marine Fisheries Service. 2000. Salmonid travel time, and survival related to flow in the Columbia River Basin. URL: <http://www.nwfsc.noaa.gov/pubs/white/whiteflow.pdf>.
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